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Higher Order Squeezed States of Anharmonic
Oscillators
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In this paper the N eigenstates of the Nth powers (N $ 3) of the annihilation
operator of an anharmonic oscillator are constructed and their completeness is
investigated. We introduce a new kind of higher order squeezing, Mth-order SU(1,
1) squeezing. The properties of Mth-order SU(1, 1) squeezing and anticorrelation
of the N states are studied. The result show that these states may form a complete
Hilbert space; the Mth-order [M 5 (n 1 1/2)N; n 5 0,1, . . .] SU(1, 1) squeezing
effects exist in all of the N states when N is even. There is anticorrelation in all
of them.

1. INTRODUCTION

Glauber [1] introduced coherent states into quantum optics and thereby
solved the mathematical difficulties which had been met in the study of light
using quantum electrodynamics, and greatly promoted the development of
quantum optics. It is well known that coherent states are eigenstates of the
annihilation operator a of a harmonic oscillator. The theory of coherent states
and their application has become an important field [2] because coherent
states not only have physical substance, but also construct a very useful
representation. It is also noteworthy that eigenstates of the square a2 of the
annihilation operator of the harmonic oscillator, which are called even and
odd coherent states [3], respectively, show two kinds of nonclassical effects;
the even coherent state shows the squeezing effect, but no antibunching,
while the odd coherent state shows the antibunching effect, but no squeezing.
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In our previous papers [4–6], the eigenstates of higher powers of the annihila-
tion operator a of the harmonic oscillator were constructed and their nonclassi-
cal properties were investigated.

In fact, many realistic problems depart from the ideal harmonic oscillator
model. Therefore, the study of anharmonic oscillators is significant. Recently,
the concept of generalized coherent states was generalized to an anharmonic
oscillator potential; they are the eigenstates of the annihilation operator A2

of an anharmonic oscillator. The generalized even and odd coherent states
are also presented by Xu [7], and are the eigenstates of the square A2

2 of the
annihilation operator of the anharmonic oscillator; their squeezing properties
were investigated [7, 8]. At this stage a natural question arises: What are the
eigenstates of the higher powers of the annihilation operator for this anhar-
monic oscillator? Are they classical or nonclassical? In this paper, we find
the eigenstates of higher powers AN

2 (N $ 3) of the annihilation operator for
this anharmonic oscillator. We introduce a new kind of higher order squeezing,
higher-order SU(1, 1) squeezing. The completeness, higher order SU(1, 1)
squeezing properties, and anticorrelation of the states are discussed.

2. EIGENSTATES AND THE MATHEMATICAL PROPERTIES
OF THE OPERATOR AN

2

For convenience of reference and completeness, in this section we begin
with some related results for the anharmonic oscillator [7–10].

The Hamiltonian of an anharmonic oscillator is [10]

H 5 2
1
2

d 2

dx2 1
1
2

x2 1
1
2

g
x2 , g . 0 (1)

where m 5 " 5 v 5 1. Let g 5 l(l 1 1); from (1) we have

H 5 2
1
2

d 2

dx2 1
1
2

x2 1
1
2

l(l 1 1)
x2 (2)

To ensure g . 0, we choose l , 21 and l 5 2 1/2 2 !g 1 1/4 [9].
According to ref. 11, the corresponding natural coordinate operator Q and
natural momentum operator P are, respectively,

Q 5 x2 2 H, P 5
1
2i 1x

d
dx

1
d
dx

x2 (3)

They obey the commutation relations

[H, Q] 5 22iP, [H, P] 5 2iQ, [Q, P] 5 2iH (4)

For this anharmonic oscillator, we define the creation and annihilation opera-
tors as [7–10]
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A+ 5
1
2

(Q 2 iP), A2 5
1
2

(Q 1 iP) (5)

Therefore

[H, A6] 5 62A6, [A2, A+] 5 H (6)

Let H 5 2A0; substituting it into (6), we find that the operators A6 and A0

can form a specific bosonic representation of the SU(1, 1) Lie algebra; i.e.,
A6 and A0 are the generators of the SU(1, 1) Lie group [12]. Assuming that
.n; k& is the nth energy eigenstate of this anharmonic oscillator, we have
[7–9, 12]

H.n; k& 5 2(n 1 k) .n; k& (7a)

A+.n; k& 5 !(n 1 1)(n 1 2k) .n 1 1; k& (7b)

A2.n; k& 5 !n (n 1 2k 2 1).n 2 1; k& (7c)

where k 5 (1 2 !g 1 1/4)/2 [9] and A2.0; k& 5 0 [12]. From (7), we obtain

.n; k& 5
1

!n!(2k)n

bn
1.0; k& (8)

with (2k)n 5 (2k)(2k 1 1) ??? (2k 1 n 2 1) 5 G(n 1 2k)/G(2k).

2.1. Eigenstates of the Operator AN
2

Following the definition of the generalized even and odd coherent states
[7, 8] (i.e., the eigenstates of the operator A2

2), we consider the following N
states (N $ 3):

.cj &N 5 Cj o
`

m50

bmN1j

!(mN 1 j )!(2k)mN1j

.mN 1 j; k&

( j 5 0, 1, 2, . . . , N 2 1) (9)

where b is a complex number. The Cj ( j 5 0, 1, 2, . . . , N 2 1) are
normalization factors, which can be obtained by letting N^cj.cj &N 5 1 ( j 5
0, 1, 2, . . . , N 2 1). Thus we have

Cj (r 2) 5 [Bj (r 2)]21/2

5 Fo
`

m50

r 2(mN1j)

(mN 1 j )!(2k)mN1j
G21/2

( j 5 0, 1, 2, . . . , N 2 1) (10)

where r 5 .b.. It is easy to prove that the N states of (9) are all eigenstates
of operator AN (N $ 3) with the same eigenvalue bN, and they are orthogonal
to each other, i.e.,
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AN.cj &N 5 bN.cj &N , N^ci.cj &N 5 0 (11)

(i, j 5 0, 1, 2, . . . , N 2 1; i Þ j )

For a fixed value of N, it is obvious that the N states given by (9) are formally
similar to the Barut–Girardello coherent state [12, 13]. In particular, for N 5
1 ( j 5 N 2 1 5 0), the state .c0&1 is just about the Barut–Girardello coherent
state or the SU(1, 1) intelligent state [14].

2.2. Mathematical Properties of the Eigenstates of AN
2

First, it is seen that the eigenstates of the operator AN
2 contain the complex

parameter b. When b takes different values, the internal product of every
eigenstate does not equal zero, i.e.,

N^cj (b).cj (b8)&N 5 [Bj (.b.2)Bj (.b8.2)]21/2 o
`

m50

(b*b8)mN1j

(mN 1 j )!(2k)mN1j

5 [Bj (.b.2)Bj (.b8.2)]21/2 Bj (b*b8) Þ 0 (if bÞb8) (12)

This means that, in the b manifold, each of the N eigenstates of the operator
AN

2 is not orthogonal by itself. This property is the same as that of the normal
coherent states.

Second, in the space consisting of the N eigenstates of the operator
AN

2, each of the N eigenstates can be generated by the annihilation operator
A2. For example, if the operator A2 is used successively on .c0&N , we get

Ai
2.c0&N 5 biB21/2

0 B1/2
N2i.cN2i&N (i 5 1, 2, . . . , N ) (13)

That is, under the action of A2, the eigenstate .c0&N may be transformed in
turn as follows: .c0&N → .cN21&N → .cN22&N → ??? .c1&N → .c0&N. Therefore,
the operator A2 plays the role of a ‘rotation operator’ among the N eigenstates
of the operator AN

2.
The final question that concerns us is whether the N states given by (9)

could construct a complete Hilbert space, i.e., whether they could be used
as a representation. In order to construct the completeness formula for the
N states, we use the density operator method [15]. We define the density
operator (i.e., a density matrix) of the state .mN 1 j; k&

rj 5 o
`

m50
P(mN 1 j; k).mN 1 j; k&^mN 1 j; k. (14)

where P(mN 1 j; k) 5 * P(mN 1 j, b; k) d 2b is the probability distribution
of the (mN 1 j )th energy eigenstate .mN 1 j; k& of the anharmonic oscillator
appearing in the state .cj &N in which
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P(mN 1 j, b; k) 5 .^mN 1 j; k.cj &N.2 5
1

Bj (.b.2)
.b.2(mN1j)

(mN 1 j )!(2k)mN1j

(15)

Thus we have

r21
j 5 o

`

m50
P21(mN 1 j; k).mN 1 j; k&^mN 1 j; k.

Therefore, the completeness formula of the N states given by (9) can be
written as

o
N21

j50
r21

j # d 2 b.cj &N ? N ^cj. 5 1 (16)

The proof of the Eq. (16) is given as following:

o
N21

j50
r21

j #d 2b .cj &N ? N^cj.

5 o
N21

j50
r21

j o
`

m50
o
`

n50

1

!(mN 1 j )!(2k)mN1j(nN 1 j )!(2k)nN1j

3 # d 2b
bmN1jb*(nN1j)

Bj (r 2)
.mN 1 j; k&^nN 1 j; k.

5 o
N21

j50
r21

j o
`

n50
2p #r dr

(r 2)nN1j

Bj (r 2)(nN 1 j )!(2k)nN1j
.nN 1 j; k&^nN 1 j; k.

5 o
N21

j50
r21

j o
`

n50
P(nN 1 j; k). nN 1 j; k&^nN 1 j; k.

5 o
N21

j50
o
`

m50
P21(mN 1 j; k).mN 1 j; k&^mN 1 j; k.

3 o
`

n50
P(nN 1 j; k). nN 1 j; k&^nN 1 j; k.

5 o
`

n50
.n; k&^n; k. 5 1 (17)

where b 5 r exp(iu) and d 2b 5 r dr du. Therefore, the linear combination
of the N states may form a complete representation. For example, in this
representation, the generalized coherent states .b& [7] of the anharmonic
oscillator may be expressed as
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.b& 5 [F(.b.2)]21/2 o
N21

j50
B1/2

j (.b.2).cj &N , F(.b.2) 5 o
`

n50

.b.2n

n!(2k)n
(18)

3. HIGHER ORDER SU(1, 1) SQUEEZING OF THE
EIGENSTATES OF THE OPERATOR AN

2

3.1. Definition of Higher Order SU(1, 1) Squeezing

In analogy to the definition of higher order squeezing for the conventional
single mode of the electromagnetic field [16], we define two Hermite operators

W1(M ) 5 (AM
1 1 AM

2)/2, W2(M ) 5 i(AM
1 2 AM

2)/2 (19)

It can be proved that the operators W1(M ) and W2(M ) satisfy the commuta-
tion relation

[W1(M ), W2(M )] 5 (i/2)[AM
2, AM

1] (20)

and the uncertainty relation

^(DW1)2& ? ^(DW2)2& $
1
16

.^[AM
2, AM

1]&.2 (21)

A state is squeezed to order M if

^(DW1)2& 2
1
4

^[AM
2, AM

1]& , 0, (i 5 1, 2) (22)

From (19) and (22), we can see that it is SU(1, 1) squeezing [14] when M 5
1. Therefore, this kind of higher order squeezing is a natural generalization
of SU(1, 1) squeezing. We call it higher order SU(1, 1) squeezing. It is
formally similar to the higher order squeezing defined by Zhang et al. [16].

3.2. Properties of Higher Order SU(1, 1) Squeezing of the Eigenstates
of Operator AN

2

Now we study the properties of higher order SU(1, 1) squeezing for the
N states given by (9) in the following four cases.

3.2.1. M 5 nN (n 5 1, 2, 3, . . .) for Even and Odd N

In this situation, for all of the states given by (9), we have from (11)

N ^cj.A2M
1 .cj &N 5 r 2nN e2i2nNu, N ^cj .A2M.cj &N 5 r 2nN ei2nNu (23a)

N ^cj.AM
1.cj &N 5 r nN e2inNu

N ^cj.AM.cj &N 5 r nN einNu (23b)
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N ^cj.AM
1AM

2.cj &N 5 r 2nN (23c)

Substituting (23a)–(23c) into (22), we obtain

N ^cj.(DWi)2.cj &N 2 1–4 N ^cj.[AM
2, AM

1].cj &N 5 0 (i 5 1, 2) (24)

This indicates that the N states of (9) are all minimum-uncertainty states of
the operators W1(M ) and W2(M ) (M 5 nN, n 5 1, 2, . . .) defined by (19).

3.2.2. M 5 nN 1 i (n 5 0, 1, 2, . . . ; i 5 1, 2, . . . , N 2 1) for Odd N

In these conditions, for all N states of (9), we have

N ^cj.A2M
1 .cj &N 5 N ^cj.A2M

2 .cj &N 5 N ^cj.AM
1.cj &N 5 N ^cj.AM

2.cj &N 5 0 (25)

Using relation (13), we obtain

N ^cS.AM
1AM

2.cS&N 5 r 2(nN1i) BN2i1S /BS (S 5 0, 1, 2, . . . , i 2 1) (26)

N ^ct.AM
1AM

2.ct&N 5 r 2(nN1i) Bt2i /Bt (t 5 i, i, 1 1 . . . , N 2 1) (27)

Therefore, for the states .CS&N (S 5 0, 1, . . . , i 2 1) and .Ct&N (t 5 i, i 1
1, . . . , N 21), we have

N ^CS.(DW1)2.CS&N 2 1–4 N ^CS.[AM
2, AM

1].CS&N 5 1–2 r 2(nN1i) BN2i1S /BS (28)

N ^Ct.(DW1)2.Ct&N 2 1–4 N ^Ct.[AM
2, AM

1].Ct&N 5 1–2 r 2(nN1i) Bt2i /Bt (29)

From (10), we have Bj (r 2) . 0 when r 5 .b. Þ 0. The right-hand sides of
(28) and (29) are larger than zero. Therefore, none of the N states given by
(9) has Mth-order (M 5 nN 1 i; n 5 0, 1, 2, . . . ; i 5 1, 2, . . . , N 2 1)
SU(1, 1) squeezing in these conditions.

3.2.3. M 5 nN 1 i (n 5 0, 1, . . . , i 5 1, 2, . . . , N/2 2 1, N/2 1 1,
. . . , N 2 1) for Even N

With the above discussion, it can be proved that under these conditions,
none of the N states given by (9) has Mth-order SU(1, 1) squeezing.

3.2.4. M 5 (n 1 1/2)N (n 5 0, 1, 2, . . .) for Even N

Now we have

N ^cj.A2M
1 .cj &N 5 r (2n11)N e2i(2n11)Nu,

(30a)
N ^cj.A2M.cj &N 5 r (2n11)N ei(2n11)Nu

N ^cj.AM
1.cj &N 5 N ^cj.AM

2.cj &N 5 0 (30b)

Making use of (13), we obtain
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N ^cS.AM
1AM

2.cS&N 5 r (2n11)N BN/21S /BS

(S 5 0, 1, 2, . . . , N/2 2 1) (31)

N ^ct.AM
1AM

2.ct&N 5 r (2n11)N Bt2N/2 /Bt

(t 5 N/2, N/2 1 1, . . . , N 2 1) (32)

Consequently, for the states .CS&N (S 5 0, 1, . . . , N/2 2 1) and .Ct&N (t 5
N/2, N/2 1 1, . . . , N 2 1) we have, respectively,

N ^cS.(DW1)2.cS&N 2 1–4 N ^cS.[AM
2, AM

1].cS&N

5 1–2 r (2n11)N [BN/21S /BS 1 cos(2n 1 1)Nu] (33)

N ^ct.(DW1)2.ct&N 2 1–4 N^ct.[AM
2, AM

1].ct&N

5 1–2 r (2n11)N [Bt2N/2 /Bt 2 cos(2n 1 1)Nu] (34)

According to (33) and (34), the conditions which ensure the existence of
Mth-order [M 5 (n 1 1/2)N, n 5 0, 1, 2, . . .] SU(1, 1) squeezing in the
states .CS&N (S 5 0, 1, 2, . . . , N/2 2 1) and .Ct&N (t 5 N/2, N/2 1 1, . . . ,
N 2 1) are, respectively,

BN/21S /BS 1 cos(2n 1 1)Nu , 0 (35)

Bt2N/21 /Bt 2 cos(2n 1 1)Nu , 0 (36)

Since Bj (r 2) . 0 when r 5 .b. Þ 0, it can be seen that if N and n are given,
(35) or (36) will be satisfied provided that the modulus r and argument u of
the complex parameter b are chosen properly. Therefore, for even N there
exists Mth-order [M 5 (n 1 1/2)N; n 5 0, 1, 2, . . .] SU(1, 1) squeezing in
the eigenstates of the operator AN.

4. ANTICORRELATION IN THE EIGENSTATES OF THE
OPERATOR AN

Now, for the N states .cj &N given by (9), we consider the second-order
correlation function defined by [12]

g2,j 5
N ^cj.A2

1 A2
2.cj &N

N ^cj.A+ A2.cj &2
N

( j 5 0, 1, 2, . . . , N 2 1) (37)

If g2,j , 1, we say that there is anticorrelation [12] in the states .cj &N. This
kind of characteristic is formally similar to the antibunching effect of a light
field [17]. We study this anticorrelation in the N states given by (9).

Using (13) and (37), for the N states given by (9), we obtain
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g2,0 5
N ^c0.A2

1 A2
2.c0&N

N ^c0.A+ A2.c0&2
N

5
B0 BN22

B2
N21

(38)

g2,1 5
N ^c1.A2

1 A2
2.c1&N

N ^c1.A+ A2.c1&2
N

5
B1 BN21

B2
0

(39)

g2,j 5
N ^cj.A2

1 A2
2.cj &N

N ^cj.A+ A2.cj &2
N

5
Bj22 Bj

B2
j21

( j 5 2, 3, . . . , N 2 1) (40)

Substituting (10) into (38), we obtain

g2,0 5 o
`

m50
Ho

m

n50
[(nN )!(2k)nN (mN 2 nN 1 N 2 2)!(2k)mN2nN1N22]21JymN

3 1y N o
`

m50
Ho

m

n50
[(nN 1 N 2 1)!(2k)nN1N21

(mN 2 nN 1 N 2 1)!(2k)mN2nN1N21]21JymN2
21

5 f1( y)/[yN f2( y)] (41)

where y 5 r 2 5 .b.2. For N $ 3, we have

o
m

n50

1
(nN )!(2k)nN (mN 2 nN 1 N 2 2)!(2k)mN2nN1N22

. o
m

n50

1
(nN 1 N 2 1)!(2k)nN1N21(mN 2 nN 1 N 2 1)!(2k)mN2nN1N21

(42)

and hence f1( y) . f2( y), so that g2,0 . 1 when y , 1. However, when y .
1, there surely exist values of y [e.g., y N . f1( y)/f2( y)] for which the following
relation holds:

g2,0 5 f1( y)/[y N f2( y)] , 1 (43)

Substituting (10) into (39), we have

g2,1 5

y N o
`

m50
Ho

m

n50
[(nN 1 1)!(2k)nN11(mN 2 nN 1 N 2 1)!(2k)mN2nN1N21]21JymN

o
`

m50
Ho

m

n50
[(nN )!(2k)nN (mN 2 nN )!(2k)mN2nN]21JymN

5 y Nf3( y)/f4( y)
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Obviously,

o
m

n50

1
(nN 1 1)!(2k)nN11(mN 2 nN 1 N 2 1)!(2k)mN2nN1N21

, o
m

n50

1
(nN )!(2k)nN (mN 2 nN )!(2k)mN2nN

(45)

so that f3( y) , f4( y). Therefore g2,1 , 1 when yN , f4( y)/f3( y).
From (10) and (40), we obtain

g2,j 5
o
`

m50
Ho

m

n50
[(nN 1 j 2 2)!(2k)nN1j22(mN 2 nN 1 j )!(2k)mN2nN1j]21JymN

o
`

m50
Ho

m

n50
[(nN 1 j 2 1)!(2k)nN1j21(mN 2 nN 1 j 2 1)!(2k)mN2nN1j21]21JymN

,
o
`

m50
[(m 1 1)/( j 2 2)!(2k)j22 j!(2k)j]ymN

o
`

m50
(m 1 1)/[(mN 1 j 2 1)!(2k)mN1j21]2

,

[ j!(2k)j ( j 2 2)!(2k)j22]21 o
`

m50
(m 1 1)ymN

[( j 2 1)!(2k)j21]22 ( j 5 2, 3, . . . , N 2 1)

Obviously,

lim
y→0

o
`

m50
(m 1 1)ymN 5 1 (47)

Therefore, from (46), we obtain

lim
y→0

g2,j ,
[( j 2 1)!(2k)j21]2

j!(2k)j ( j 2 2)!(2k)j22

5
( j 2 1)(2k 1 j 2 2)

j(2k 1 j 2 1)
, 1, ( j 5 2, 3, . . . , N 2 1) (48)

Therefore, there is anticorrelation in the states .cj &N ( j 5 2, 3, . . . , N 2 1)
when y → 0.

We sum up the above results and obtain that, in different ranges of y 5
.b.2, there is anticorrelation in all of the N states given by (9).

5. CONCLUSION

In this paper, the N eigenstates of the higher powers AN (N $ 3) of the
annihilation operator of an anharmonic oscillator are constructed. We defined
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higher order SU(1, 1) squeezing and studied its properties and anticorrelation
of the N states. For the N eigenstates of the operator AN, we come to the
following conclusions: (a) Their linear combination may form a complete
representation. (b) For odd N, none of them has higher order SU(1, 1) squeez-
ing. (c) For odd N and even N, all of them are minimum-uncertainty states
of the operators W1(M ) and W2(M ) (M 5 nM, n 5 0, 1, 2, . . .) defined by
(19). (d) For even N, when M 5 (n 1 1/2)N (n 5 0, 1, 2, . . .), for all of
them Mth-order SU(1,1) squeezing exists, (e) There is anticorrelation in all
N states.
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